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We present a new numerical method for solving the Boltzmann-
Poisson system which describes charge transport in semiconductor
devices. The Boltzmann equation is reduced from three dimensions in
velocity space to two by taking the electric field parallel to the z axis,
which implies invariance of the probability density function under
rotation around the z axis. We develap a finite difference discretization
of the Boltzmann equation in one spatial dimension and two-
dimensional velocity space, coupled to the Poisson equation. The
system of equations obtained by taking the first five moments of the
Boltzmann equation coupled to the Poisson eguation is known as
the hydrodynamic mode! in semiconductor modeling. A comparison of
the numerical results from our method and the hydradynamic model is
given. Also a numerical investigation is done with respect to the heat
conduction, viscosity, and momentum relaxation terms in the
hydrodynamic madel.  © 1993 Academic Press, inc.

1. INTRODUCTION

Charge transport in semiconductor devices is modeled
semi-classically via a system consisting of the Boltzmann
transport equation, BTE, coupled to the Poisson equation.
The Boltzmann equation is an integro-differcntial equation
in seven dimensions, with three dimensions in space, three
in velocity space, and one in time. Full discretization of the
BTE in seven dimensions is out of the range of existing com-
puters. A variety of numerical methods have been designed
to solve the Boltzmann equation. A very popular method
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for solving the BTE is the Monte Carlo method. For a
comprehensive and tutorial review of this method, with
emphasis on charge transport in semiconductor devices, we
refer the reader to the article by Jacoboni and Reggiani
[10]. The Monte Carlo method relies on random sampling
and the results are often noisy. Accurate coupling of the two
equations in Monie Carlo calculations is a non-trivial task.
Another approach to solving BTE is the particle method.
In this approach, the collision integrals are calculated
deterministically [ 13].

We develop an upwind finite difference approximation
for the Boltzmann—Poisson system. Forward Euler time
differencing is used to discretize the Boltzmann equation in
time. A general upwind scheme is designed to handle the
differential terms in the Boltzmann equation. The discretiza-
tion is designed such that mass is conserved in each time
step. The collision integrals are approximated by simple
trapezoidal rule. The result of the approximation is a matrix
that is calculated once in the beginning of the calculation.
This method is closely related to the methods developed for
solving the kinetic equation for neutron transport [11] and
to the methods developed by Chorin [3] and Sod [16] for
solving the Boltzmann equation for a steady shock wave,

The first five moments of the Boitzmann equation taken
in the velocity space are conservation laws for mass,
momentum, and energy. The conservation law system
consists of five equations with 14 dependent variables in
three-dimensional space. The system is usually closed with
constitutive relations which are derived from certain
assumptions about the shape of the probability density
function in the velocity space. The hydrodynanmic model in
semiconductor modeling is derived with the assumption of
pressure tensor to be scalar and heat flux to be defined by
the Fourier law [ 1, 47. The hydrodynamic model consists of
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the Euler equations of gas dynamics with source terms and
the heat conduction term coupled to the Poisson equation.
In the hydrodynamic model scattering terms are replaced
with relaxation time approximations.

A simpier and older model that is widely used for
industrial applications is drift—diffusion. The drift-dilfusion
system is conservation of the mass equation and a simplified
version of conservation of the momentum equation. The
simplified momentum equation is derived by assuming tem-
perature to be constant and the Mach number of the flow to
be small. The drift-diffusion model loses its accuracy as the
size of the device becomes less than one micron. The
numerical results from the hydrodynamic model confirm
that it is more accurate than the drift—diffusion model in the
submicron regime,

We develop an upwind finite differencing method to solve
the Boltzmann—Poisson equation numerically. Once the
distribution function is calculated, we evaluate the moments
of the distribution function numerically and recover various
terms in the hydrodynamic model. This procedure enables
us to test various hypotheses and approximations for
the constitutive laws in the hydrodynamic model. The
hydrodynamic model is solved using a sixth-order essen-
tially non-oscillatory, ENO, shock capturing algorithm
[4, 15]. The ENO methods were designed originally for
computation of gas flows with shocks and flows in high
Mach number regimes. The ENQ method is based on inter-
polating a sixth-order polynomial to the data in an adaptive
fashion. The stencil points are chosen such that data from
the smooth part of the solution is used for the interpolation.
The high order method is proven to be effective in resolving
the solution in high gradient regions.

2, BOLTZMANN-POISSON SYSTEM
We represent by f(x, u, ¢) the probability density function
of electrons, where x={(x,y,z) is the space variable,

u=(u, v,w) is the velocity variable, and r is the time
variable. The dynamics of electrons is modeled by

ﬁ+u-V,f+—:;V¢-V“f

= [ st w1y dw = [ sto, w) fwyan’, (1)
V(e V4) =e(—No(x) + [ f(u} du), @
(Fo F, FA=F=—ZE="V4,  n=[flu)du

s{u, u’) is the scattering operator, ¢ is the electric potential,
E is the electric field, N ,(x) is the density of donors, e is the
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charge of an electron, ¢ is the permittivity in the crystal, and
n= [ f(u) du is the density of electrons. We consider only
the scattering of electrons from lattice sites in the scattering
operator and the electron—electron interaction is neglected.
The ¢lectron—lectron scattering can be easily incorporated
in our numerical method. Note that N,(x} in general is a
discontinuous function and jumps of several orders of
magnitude in N, are normal in a device.
We scale the equations in the following fashion:

fr,=1t, XL=x, ul/=u,

Y . L

E:& ¢(mE ):—q}, AN =n;
T, €

1, is the momentum relaxation time, t, is a typical time scale
for relaxation of the tranmsients in the time dependent
solutions, U is of the order of the saturation velocity of the
electrons, E is the maximum electric field in a device, and
N is the maximum value of N,(x}. In a typical device
there is always an internal electric field around the junctions
and E could be high even if the applied voltage is zero. We
suppress the bar notation for the scaled quantities and
obtain

ﬁ+(%)u-vxf+(%)V¢'Vuf

=C_)( [[stor, w) £ty dw' = [ stu, w) fw) du'), (3)

r
e’ LN
emE

V-(V¢)=( )(—N.D+n). (4)

There are four non-dimensional parameters in the above
system:

Ur, Er, T, e’LN
L’ v’ 1, emE’
We let T, = L/U and then we have
LN
U\ Eugoers, Zas~so, =2 xiso.
L U 1, E

We identify the ratio Kn=1,/t,=1,U/L as the Knudsen
number of the flow. Note that the quantity e*LN/emE
represents the stiffness of the system due to the Poisson
equation. The stiffness of the problem increases with
increasing N and decreases with decreasing L.

From the Boltzmann equation one can obtain conserva-
tion laws for the mass, momentum, and energy of the flow.



FINITE DIFFERENCE SOLUTION OF BOLTZMANN

The average of the quantity (u) in the velocity space is
defined by

W.ry=] JM [ piw s du

+co
The equation for the evolution of the averaged quantity,
i, 5, is obtained from the Boltzmann equation,

AV K, fr=FNV . 5+, 55 (5)
By taking ¥ =m, mu, and imu?® one recovers the Euler
equations of gas dynamics. These equations for electron
transport have been proposed by Blgtekjer [2] and have
been studied numerically by [8, 14, 7, 4, 5]. The viscosity
solutions of this system have been studied by [6]. In the
numerical calculations done in [4], non-physical velocity
spikes were observed as electrons cross the channel to the
drain. We investigate the source of this inaccuracy by
checking the accuracy of the approximations for heat
conduction, viscosity, and momentum relaxation terms.

We use the classical closure relations for the compressible
gas flow to close the hydrodynamic model [9]. The
Chapman-Enskog expansion is obtained by expanding the
distribution function for a dilute gas in the parameter
e=A/L, where 4 is the mean free path and L is a typical
length scale. The =zeroth-order term is a displaced
Maxwellian for the distribution of the gas. The conservation
laws obtained from the zeroth-order approximation is'the
Euler equations for compressible gas flows. The conserva-
tion laws from the first-order approximation is simply the
Navier-Stokes system for compressible gas flows.

We repeat here the first-order approximations of the
constitutive relations for reference. We define v to be the
average velocity, v= {u, f>/{}, f>. The third moment of
the probability density funcion is identified as the heat
conduction and is approximated by the Fourier law,

Im{u—v|>(u—v),f>x~xnVT.

The pessure tensor is approximated by a scalar pressure
plus the viscous correction,

am(u—v) (u—v),f>

nTy, nTyy nTy, nf 0 0
=\ nTy nTyy nTylz=|l 0 T 0
nTy nTly; nTs, 0 0 mT
fu,—30,— 3w, M, 40, W+,
—~ U, + 0, $o,—3u,—3w, w,+0, ,
u+w, v.+w, dw.—2u,—3v,

where temperature is defined as 7= (T, + T+ To3)/3.
For the coefficient of viscosity we use v=1,nT which is
based on assuming the mementum relaxation time, Tp, 10
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be the mean free time. This assumption has not been
investigated. The momentum relaxation time is defined by

<“S’f> s _<“1f>/rp'

We use the calculated probability density function from the
Boltzmann equation to verify the models for x and 7,, as
proposed by Baccarani and Wordeman [1]. These models
are i =3pok; To/2e and v, = mu, TjeT.

3. TRANSFORMATION TO SPHERICAL COORDINATES

We consider a one-dimensional device where the electric
field is in the z axis direction. The probability density
function is invariant under rotation around the z axis.
Exploiting this property, we do a coordinate transformation
in the velocity space from the Cartesian coordinate system
to a spherical coordinate system. This enables us to reduce
the number of independent variables in the velocity space
from three to two. Consider the Boltzmann equation for
f(x,y, z,u, 0, w, t),

S uV, f+FY, f=] s’ w)f(w) du

- .[ s(o,u’) f(u) du’,

We use the spherical transformation from (k, @, ¢} to
(u,v,w) via u=ksin@cos¢, v==~ksinf#sing, and w=
k cos #; k is the length of the vector (w, v, w), £ is the angle
between the velocity vector and the z axis, and ¢ is the
angle around the z axis. The Boltzmann equation in the
transformed space is

fi+k sin 6 cos ¢f, 4k sin 0 sin ¢f, + k cos ¢f.
+ {F,sinficosg+ F,sinfsing+ F.cos 8} £,

cos ¢ cos f sin ¢ cos 6 sin 6
p ol g bl O,
Ao sin ¢ F cos ¢ )
“reksing T ksing)’?

= J sk, ¢k, 0, 0 (K, 0, ¢k sin 8 dk’ d6" dy’
— [ stk 0,0, k',0', 8') 1tk 0, 4)
x k' sin 0" dk’ d§’ d¢'.
fis dependent only on z, £, 6, and ¢ because of the axial

symmetry. We introduce a new variable g = cos ¢ and then
the right-hand side of the Boltzmann equation is

1—u?
I A A
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For discretization purposes we prefer to write it as
2w (1= pl)f)u}

k k
The above definition is motivated by the observation that
the combination pf, + 2uf/k is not in conservative form, but
K2(uf + 2uffky= p(k*f), is in conservative form. The
complete transformed system is

ot ki, + F, {pfk+

2 1—p?
fokuf 2 el )

=2 [ (k' ' e ) f U, ) K2
—2n j stk, i k', @) flle, ) k' di” dut,

¢:z = (n —ND)’

]

Fz _¢z'
m

n=2n ”f(k, W) k2 die dp,

The above system is completed with the initial value and

(7)

radius k.., and outer radius k., . In spherical coordinates
this domain is transformed into the box: [0, z,,.]x
[Amin: Kmax ] % [—1,1]. The boundary conditions are
determined based on the direction of the characteristic lines
{see Fig.1). There is no need for boundary conditions at
flz, k, 1} and f(z,k, —1} since the characteristics are
paraliel to the boundary. Also no boundary conditions are
necessary for (0, &, u) for p <0 and f(z.,, &, i) for u>0.
In the % direction we use zero flux condition for &k, :

f(z’ kmax: #) =O

The boundary condition at the boundary of the removed

sphere around the singular point, £ =0, is based on identi-
fying the upper part of the hemi-sphere with the lower part.
This boundary condition in the transformed domain is

f(Z, lkmina “)‘=f(zs kmin3 —’#)

We study the characteristic lines in (k, u) space to motivate
the above condition. The characteristic lines are defined as
integral curves of

du  F(1—yp%)

ds ko

dk

ds zH

boundary conditions. For the Poisson equation, we specify
the potential at the boundaries of the device, ¢{(0) =0 and
#(z,.c)=1.0. For the initial value of f, we specify a
Maxwellian distribution with zero mean velocity and

Jen(-25)

In the Cartesian coordinates, the computational domain is
the cross product of the interval (0, z,,, 1 with a shell, inner

temperature of the lattice, Ty:
mk?
2kyT,

m
Sz ks 1, 0) = (m -

max

Characteristic Lines

B
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FIG. 1. Characteristic curves in velocity space.

In the Cartesian space, (u, v, w), they correspond to

d
Y_g

du
— ds_ >

ds

In the Cartesian space, points {u, v, w) are connected to the
peints (w, v, —w) through the characteristic lines (see
Fig. 2). After removal of the ball, we identify (x, v, w) points

with (u, v, —w) points. This is equivalent to identifying

FIG. 2. Boundary conditions for k.
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(k, ) with (k, —u). Finally, we specily the boundary
conditions for the inflow and outflow of electrons:

SOk, ) if p>0,

F(Zmaxs Ko 1) if p<0.
Choosing the appropriate boundary conditions is part of
the physical modeling of the device under consideration; for
the ballistic diode we choose df/dz =0

We consider the scattering terms for our calcula-
tions [10],

{ st w) £y du’ = { s(u, ) f(w) dur,

where

s(u, u) =5, (u,u' )+ 57 (u, 0} + S;’;’(u, w'),

1 /m\* 2k Ty E2
= i “thg i o ae N_E

s o) = s () e L)~ Ew)].
emiy, u') = 1 (ﬁ)j (D Ky
TR e,

x N2 o[E(')— E(u) + hew,,],

k] 2

Sabs(u’ u.') - L (E) H(DJK)
P \%) pa,,

x Nop0LE(0') — E(w) —ho,, 1;

Eis the energy of an electron and is given by E(u) = imu? =
1mk?; m is the reduced mass of an electron, and & is the delta
function.

The corresponding terms in the hydrodynamic model
are calculated by computing the integral in spherical
coordinates:

o0 1 2n
fy=[ K dk[ Stk wydu  hik.u 9) db

We present a list of the quantities of interest:

h(k, 1, @) =1, u, v, w, u?, v*, W, uv, vw, wu, uk?, vk*, wk?,
+oo sl 2
Aofy=2m{ [ KAk, ) di d
0 1

onty=2m [ [ sk, ) dk dn,
] —1

oS> =0,

<H,f> =0,

+co
1]

G fy= A= (- R 0 dk di

381/108/2.2
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+o0

iy =om [ ke ) ki
¢ -1

{uw, 5 =0,
Cuw, 5 =0,
{ow, [ =0,
Cuk?, > =0,
(ok?, 5 =0,

nk fy=2m | " jl S Flke, ) dk dy.
4] 1

The heat conduction term is

l 2 w5 2 2 2
s { = SR 3O+ G + <)

)

Temperature is calculated via

+2

L fr—<uf>?

11 "'2m <1,f> s
LR — gy
T Ly

4. THE BALLISTIC DIODE PROBLEM

As a model problem, we simulate the flow of electrons in
a submicron n* —n—n* silicon diode. This device models
the channel in a MOSFET. The diode begins with a n™
“source” region, is then followed by a n “channel” region,
and ends with a #* “drain” region. The effects of holes may
be neglected for the ballistic diode problem. For a discus-
sion of the units and the proper constants, we refer the
reader to Fatemi, Jerome, and Osher [4]. For the constants
that are not in the above reference, we use the following
values:

Nap — (ehwnpfka'fo_ 1)—1’ N;;;=an+ 1

E, . =50¢V, F=1.055%10"%, u;=9.0x10° cm/s
p=233g/cm®, D,K=155x10"eV/cm,
A =0.063 eV,

5. NUMERICAL SCHEME

Our developed numerical scheme is based on forward
Euler time discretization, upwind finite difference approxi-
mation of the differential terms, and approximation of the
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scattering operator by a matrix operator. The system is

abstractly represented by
f=F/¢).  4¢=G(f)

The second equation is linear and one-dimensional. Its

solution is rather trivial. One can solve for ¢ and substitute
in the first equation:

[i=F(f, 47HG(N).

The resulting equation is a non-linear hyperbolic equation.
The non-linear term is V¢ .V_f We denote by f* the
solution at time n 4¢. The discretization in time is

fn+ 1 _frt

= EUL 60,

A¢"=G(f7).

Our discretization in detail is presented below. We define a
grid in (z, &, p, t) space by

S =S4z i Ak, j Ap, n Aty = flz,, ki, 5 10}

Backward difference is defined as D f,;=(/,—fi_1 )/
4z, with the forward difference as D' fw (fowry— JwhAz
and the central difference as D? fs,j= (fowrg—foo1.5)24z.

Using the above notation, our numerical scheme 1s

DID;gI=S(n—ny).  F=—D,  (8)
N f;+1/2—fs-1/z
4
At +hu Az
fa+1/z — 172 ZH)Fr' gj+1/2_gj—1/2 _
+F;{ Ak T k Ap =Su
{9)
j= ji+ 12 +ff— 172

2(1 + Ak%/4k2)

n=n3 z(kz 2 o) ot

The definitions for n, and f are designed such that mass is
conserved in each time step. These definitions are motivated
by the following argument. Recall that density is calculated
via

n=2n”f(k,u)k2dkdu.

In the velocity space, mass is conserved since we have

kz(fk + 2k} = (sz)k:

[[ £ {ufk+%+ﬂ%ﬂ} k2 dic dy = 0.
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We discretize the terms f, + 2f/k such that an analogous
relation holds for the discretized approximation:

s (e+7)

& (k%) 12— (sz)i—uz
= (k?+ 12— k?_ 1,‘2)fi+ 12t k?_ 1/2(f1‘+ 172 —fie 1/2)
= (k?», 12— kf_ 1,'2)ff— 12t k?+ 1/2(fr+ 12 —fi- 1,’2)-

With some manipulation we obtain

lf fi —fi_ip
kz(fk ) 2(k12+1/2+kr 1/2){—4-%2?1_

Z(kfer 12 k?— 1/2)fr+ 1/2 +f;7 1/2}
(k:za- 1/2+k?r1/2) 2

Ak?
k24
(*4)

f+u2
Ak

1 1/2

2 (fivrp +ﬂ—1/2)}
k 201 + Ak 4k |

Flux fllHCtiOllS,ﬂ+1/2,ﬁ+l/2, and g, ,,, are defined in the
following fashion:

Forin=1, i ku>0,
f5+l/2:fs+l if kp<0,
fion=1. if Fou>0,
ff+1/2=f,-+: if Fu<0,
in=01—p)f if F.>0,
Eaip=(1—p"f,, i F.<O

The scattering terms S; are calculated using trapezoidal
rule. The scattering term, s,., is analytically integrated in
the k space. For integrating s;' and s“"’ an approximation
to the é function is used. The partlcular approximation that
we used is

2
olx)= OZS(I—?)H(I—x }.

H{x) is the Heaviside function. The scattering operator
is reduced to a matrix operator that is computed at the
beginning of the calculation and used for the rest of the
computation. The trapezoidal rule is used as the integration
formula for calculating the moments.

The upwind difference approximation of the first-order
terms has the truncation error that contains a second-order



FINITE DIFFERENCE SOLUTION OF

operator with a positive multiplier. The truncation error of
our discretization is

A klpldz . |Fopl 4k |F-pi 4k
7 fim Ty I= T T aea
\Foldp . 2\F | pdp . |F:|(1-p) Ap
T S T

The truncation error introduces the so-called artificial
viscosity in the method. The second-order operator
smooths sharp gradients in the solution. This smoothing
effect is reduced by refining the mesh in high gradient
regions. An alternative solution is to use high order methods
to calculate the fluxes. In the calculations done based on the
hydrodynamic model, use of a sixth-order stencil proved to
be effective in reducing numerical diffusion in high gradient
regions [4]. For BTE calculations, we had to refine the
mesh in the areas where the gradient of n, is high. Our
developed scheme for BTE is general and can be extended to
higher order methods. Higher order schemes such as ENO
schemes can be easily implemented in our code.

Since our time integration is explicit, time steps have to be
limited to satisfy the Courant-Friedrichs~Lewy (CFL)
condition. Necessary CFL conditions for stability are

kip| At F. | At F | (1—p?) at
war_ o VEga RO a
Az Ak kdu
In practice this translates into
Az Ak ko Al
Ar< , At ————, At < —2——
K max Max | £ ] Max |F,|

We used an automatic time stepping based on the above
criteria in our calculations and no instability was observed.

6. NUMERICAL RESULTS

For validating the Boltzmann-Poisson code and com-
paring the two models, we choose the n " sn* structure as is
described in Section 4 of this paper. We use similar initial
conditions for both computations. The solutions are com-
puted for 5 ps and then compared. In Fig. 3 we show the
calculated velocity profile as a function of space. Note that
in our scale saturation wvelocity is 0.1; also note that the
spike near z= 0.7 pm is missing in the Boltzmann—Poisson
solution. We compare the Mach numbers in Fig. 4. Note
that the flow is subsonic. The maximum velocity in the
solution of BTE is higher than the hydrodynamic
model, possibly because the scattering constants are low
and/or we need to consider more scattering mechanisms. In
Fig. 5 we compare the calculated temperatures from the

Kelvin

micron/pico second

Mach Number

BOLTZMANN
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FIG. 4. Mach number of the flow.
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FIG. 6. Viscosity comparison.
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FIG. 7. Heat conduction comparison.
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FIG. 8. Momentum relaxation time comparison.
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FIG. 9. Density distribution comparison.

hydrodynamic model and the BTE code. We observe that
T;;, corresponding to the z direction, is a little higher than
T,,=(T5;). The difference can be approximated by the
viscosity terms. In Fig. 6 we compare the viscosity terms.
The solid curve is n((2Ty; — Ty — 71)/3) and the dotted
line is — §1,n7Tw_. The velocity profile calculated with the
viscosity terms included in the hydrodynamic model is very
close to the profiles calculated without the viscosity terms
(not shown here). The could be expected since the Reynolds
number of the flow is around 10% In Fig. 7 the solid line
shows the heat conduction term from BTE and the doted
line shows the heat conduction term calculated from the
Fourier law, xnT_, where for x we use the Wiedmann-Franz
law [1]. We observe that the approximation is reasonable
except in the drain, where the exact heat conduction term
decays slower than the Fourier approximation.

In Fig. 8 we plot 7,, as calculated from the BTE, the model
suggested by Baccarani and Wordeman [1], and the model
suggested by S. Lee [12]. The unusual dips in the solid line
at z=0.3 and z = 0.7 are from numerical inaccuracies. The
model for 7, is not accurate. However, two features are
observed: First the dependence of 7, on 1/7 is too strong.
The other feature is that, as electrons enter the drain, the
relaxation of the high velocity electrons requires a certain
distance. This distance seems to be shorter for relaxation of
the second moment (temperature) but longer for both the
first moment of the scattering term (momentum relaxation
time) and the third moment of the density (heat conduction
term). Finaily, in Fig. 9, we show the density distribution
funcion as a function of £ at different locations in the device.
The probability density function is integrated over all angies
u# and is normalized. The density is close to Maxwellian at
x=0.0and x = 1.0 but deviates substantially in the channel.

7. CONCLUSION

We presented a simple scheme for solving the
Boltzmann—Poisson system, modeling a one-dimensional
electron flow in a semiconductor device. The computer time
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is modest for the one-dimensional case. A more efficient
algorithm is needed for calculations in two or three space
dimensions. The results from the BTE calculations are
integrated over velocity space to obtain measurable physi-
cal quantities. The results are compared with the results
from the hydrodynamic model. The models for heat conduc-
tion and viscosity are close, but not accurate. The viscosity
term has little effect on the flow and can be neglected. The
model for 7, is very different from our computed 7, and is
one of the factors contributing to the non-physical over-
shoot, The accuracy of the hydrodynamic modei seems to be
very bad near the junctions. As the distribution function
goes through a radical change, the constitutive relations for
closing the Navier-Stokes system fail.

REFERENCES

1. G. Baccarani and M. R. Wordeman, Solid Srate Electron. 28, 407
(1985).

2. K. Blgtekjer, IEEE Trans. Electron Devices ED-17, 38 (1970).

3. A.J. Chorin, Commun. Pure Appl. Math. 25, 171 (1972).

217

4. E. Fatemi, I. Jerome, and S. Osher, JEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 10, No. 2 (1991).

5. E. Fatemi, C. Gardner, J. Jerome, 5. Osher, and D. Rose, in Computa-
tional Electronics, edited by Hess, Leburton, and Ravioli (Kluwer
Academic, 1991).

6. G.1. Gamba, Comm. Partial Differential Equarions 17, Nos. 3 & 4, 553
{1992).

7. C. L. Gardner, J, W, Jerome, and D I. Rase, Numerical methods for
the hydrodynamic device model: Subsonic flow, IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 8, 501 (1989).

8. H. L. Grubin and I. P. Kreskovsky, in VLS! Electronics: Micro-
structure Science, Yol. 10, edited by N. G. Einspruch and R. S. Bauer
(Academic Press, New York, 1985). p. 237.

9. K. Huang, Statistical Mechanics (Wiley, New York, 1987), p. 93.
10. C. Jacoboni and L. Reggiani, Rev. Mod. Phys. 55, No. 3 (1983).

11. H. B. Keller and B. Wendroff, Commun. Pure Appl. Math. 10, 567
(1957).

12. 8. Lee, Ph.D. thesis, University of Massachusetts, 1990 (unpublished).

13. B. Niglot, P. Degond, and F. Poupaud, J. Compur. Phys. 78, 313
(1988).

14, F. Odeh, M. Rudan, and J. White, COMPEL 5, 149 {1986).
15 C. W. Shu and S. Osher, J. Comput. Phys. 83, 32 (1989).
16. G. A. Sod, Commiun., Pure Appl. Math. 30, 391 (1977).



